Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning

نویسندگان

  • Samhita S Rhodes
  • Amadou K S Camara
  • Mohammed Aldakkak
  • James S Heisner
  • David F Stowe
چکیده

Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca(2+)] is controversial. We measured LV pressure (LVP) and [Ca(2+)] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca(2+)] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathematical model to interpret cross-bridge dynamics and myofilament Ca(2+) responsiveness from the instantaneous relationship between [Ca(2+)] and LVP ± stretching. We found that: (1) stretch enhanced LVP but not [Ca(2+)] before and after stunning in either control (CON) and STM groups, (2) after stunning [Ca(2+)] increased in both groups although higher in STM versus CON (56% vs. 39%), (3) STM-enhanced LVP after stunning compared to CON (98% vs. 76% of prestunning values), and (4) stretch-induced effects on LVP were independent of [Ca(2+)] before or after stunning in both groups. Mathematical modeling suggested: (1) cooperativity in cross-bridge kinetics and myofilament Ca(2+) handling is reduced after stunning in the unstretched heart, (2) stunning results in depressed myofilament Ca(2+) sensitivity in the presence of attached cross-bridges regardless of stretch, and (3) the initial mechanism responsible for increased contractility during stretch may be enhanced formation of cross-bridges. Thus stretch-induced enhancement of contractility is not due to increased [Ca(2+)], whereas enhanced contractility after stunning in STM versus CON hearts results from improved Ca(2+) handling and/or enhanced actinomyosin cross-bridge cycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased coronary perfusion augments cardiac contractility in the rat through stretch-activated ion channels.

The role of stretch-activated ion channels (SACs) in coronary perfusion-induced increase in cardiac contractility was investigated in isolated isometrically contracting perfused papillary muscles from Wistar rats. A brief increase in perfusion pressure (3-4 s, perfusion pulse, n = 7), 10 repetitive perfusion pulses (n = 4), or a sustained increase in perfusion pressure (150-200 s, perfusion ste...

متن کامل

Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle.

RATIONALE One of the physiological mechanisms by which the heart adapts to a rise in blood pressure is by augmenting myocyte stretch-mediated intracellular calcium, with a subsequent increase in contractility. This slow force response was first described over a century ago and has long been considered compensatory, but its underlying mechanisms and link to chronic adaptations remain uncertain. ...

متن کامل

Hydro-alcoholic extract of Matricaria recutita exhibited dual anti-spasmodic effect via modulation of Ca2+ channels, NO and PKA2-kinase pathway in rabbit jejunum

Objective: Several studies have shown the antispasmodic activity of Matricariarecutita without detailing the underlying mechanism(s). The present study was designed to determine whether the antispasmodic mechanisms of M. recutita extract mediated via histaminergic/cholinergic receptors, Ca2+channels, activation of PKA2 and NO release in isolated rabbit jejunum. Methods and Materials: The concen...

متن کامل

Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction.

RATIONALE The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood. OBJECTIVE Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling. METHODS AND RESULTS TRPC1/3/4/6 channel mRNA increased after MI in mice and was...

متن کامل

Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy.

We have previously reported that stretching of cardiomyocytes activates the phosphorylation cascade of protein kinases, including Raf-1 kinase and mitogen-activated protein (MAP) kinases, followed by an increase in protein synthesis partly through enhanced secretion of angiotensin II and endothelin-1. Membrane proteins, such as ion channels and exchangers, have been postulated to first receive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015